Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 18, 2026
-
Free, publicly-accessible full text available May 17, 2026
-
AI-powered applications often involve multiple deep neural network (DNN)-based prediction tasks to support application level functionalities. However, executing multi-DNNs can be challenging due to the high resource demands and computation costs that increase linearly with the number of DNNs. Multi-task learning (MTL) addresses this problem by designing a multi-task model that shares parameters across tasks based on a single backbone DNN. This paper explores an alternative approach called model fusion: rather than training a single multi-task model from scratch as MTL does, model fusion fuses multiple task-specific DNNs that are pre-trained separately and can have heterogeneous architectures into a single multi-task model. We materialize model fusion in a software framework called GMorph to accelerate multi- DNN inference while maintaining task accuracy. GMorph features three main technical contributions: graph mutations to fuse multi-DNNs into resource-efficient multi-task models, search-space sampling algorithms, and predictive filtering to reduce the high search costs. Our experiments show that GMorph can outperform MTL baselines and reduce the inference latency of multi-DNNs by 1.1-3X while meeting the target task accuracy.more » « less
-
AI-powered applications often involve multiple deep neural network (DNN)-based prediction tasks to support application level functionalities. However, executing multi-DNNs can be challenging due to the high resource demands and computation costs that increase linearly with the number of DNNs. Multi-task learning (MTL) addresses this problem by designing a multi-task model that shares parameters across tasks based on a single backbone DNN. This paper explores an alternative approach called model fusion: rather than training a single multi-task model from scratch as MTL does, model fusion fuses multiple task-specific DNNs that are pre-trained separately and can have heterogeneous architectures into a single multi-task model. We materialize model fusion in a software framework called GMorph to accelerate multi- DNN inference while maintaining task accuracy. GMorph features three main technical contributions: graph mutations to fuse multi-DNNs into resource-efficient multi-task models, search-space sampling algorithms, and predictive filtering to reduce the high search costs. Our experiments show that GMorph can outperform MTL baselines and reduce the inference latency of multi-DNNs by 1.1-3X while meeting the target task accuracy.more » « less
An official website of the United States government

Full Text Available